
Abstract. A new algorithm for density-functional-theo-
ry-based ab initio molecular dynamics simulations is
presented. The Kohn±Sham orbitals are expanded in
Gaussian-type functions and an augmented-plane-wave-
type approach is used to represent the electronic density.
This extends previous work of ours where the density
was expanded only in plane waves. We describe the total
density in a smooth extended part which we represent in
plane waves as in our previous work and parts localised
close to the nuclei which are expanded in Gaussians.
Using this representation of the charge we show how the
localised and extended part can be treated separately,
achieving a computational cost for the calculation of the
Kohn±Sham matrix that scales with the system size N as
O�N logN�. Furthermore, we are able to reduce drasti-
cally the size of the plane-wave basis. In addition, we
introduce a multiple-cuto� method that improves con-
siderably the performance of this approach. Finally, we
demonstrate with a series of numerical examples the
accuracy and e�ciency of the new algorithm, both for
electronic structure calculations and for ab initio
molecular dynamics simulations.
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1 Introduction

The calculation of the electronic properties of large
systems in the frame-work of density functional theory
(DFT) [1] is a problem of great current interest to which
much e�ort is being devoted. The more traditional and
highly successful quantum chemistry methods use atom-
localised functions expanded in Gaussians as their basis
set. This approach can optimally exploit the properties
of Gaussians, but ®nds a bottleneck in the calculation of
the Hartree and exchange-correlation (XC) potentials.

In order to circumvent this di�culty various remedies
have been proposed. A popular solution has been to
expand the density in an auxiliary basis set of atom-
centred Gaussians, [2, 3]. Very recently, we and others
have proposed using instead a plane-wave (PW) basis
set to represent the density [4, 5]. In this basis the
calculation of the Hartree potential is straightforward
and by making use of fast Fourier transforms (FFT) the
complexity of this part of the calculation becomes
O�N logN�, where N is the number of basis functions
taken here as a measure of the system size. The Kohn
and Sham (KS) potential can be represented in the real-
space mesh associated with the FFT and we have devised
convenient semianalytic recursion relations to calculate
the matrix elements of the KS potential. In practice,
if one were to apply this approach to an all-electron
calculation the rapidly varying electron density close to
the nuclei would require an impracticably large number
of PW to be accurately represented. For this reason in
Ref. [4] we used pseudopotentials which integrate out the
core electrons and lead to a smoothly varying density,
which can be expressed in a limited number of PW. The
resulting algorithm is quite e�cient in comparison with
other methods, and makes it possible to treat periodic
systems in a natural way; however, an important
fraction of the computation time has to be devoted to
the collocation of the density on the real-space FFT
mesh and the evaluation of the KS potential matrix
elements on the same mesh. This is particularly demand-
ing for second-row and transition-metal elements, whose
density varies rather rapidly, in spite of the use of
pseudopotentials, and requires a dense FFT grid.

Here we propose a di�erent representation of the
density which further improves the performance of our
new method. As in many band-structure methods, we
®nd it convenient to divide the space into non overlap-
ping localised spherical regions surrounding the atoms
and the interstitial region.

The idea is that the interstitial density varies smoothly
and is, therefore, easily representable in a PW basis, while
the rapidly varying density close to the nuclei can be
represented in terms of localised functions. Very recently
BloÈ chl [6], in the framework of a new ingenious electronicCorrespondence to: M. Parrinello
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structure method known as the projector augmented-
wave (PAW) scheme, has shown how to circumvent some
of the technical di�culties associated with the calculation
of the XC potential and the Hartree term when the charge
density is partitioned into a smooth and an atom-localised
non-overlapping part. Here we will draw heavily on this
work; however, our approach di�ers from the PAW
scheme in many important ways. We represent the KS
orbitals in Gaussians and not in augmented waves. This
simpli®es the calculation ofmanymatrix elements andwill
in future allow easier implementation of linear scaling
methods. We use a di�erent procedure to partition the
density into localised and smooth parts. Although we still
use pseudopotentials, the present approach can be ex-
tended in a straightforward fashion to include fully the
core electrons, thus leading to an all-electron scheme. In
addition we present a multiple-cuto� method for the cal-
culation of the KS matrix elements, which further en-
hances the performance of the present approach. The
layout of the paper is as follows. In Sect. 2 we recall the
essential features of the hybrid Gaussian and PWmethod
that underlies our new approach. In Sect. 5 we introduce
the new representation of the density and recall how the
KS potential can be calculated following the PAW
method. After that, we discuss how such a representation
of the density can be obtained. In Sect. 3 we introduce our
multiple-cuto� scheme. The functional form of the
resulting energy functional is presented in Sect. 6: the
corresponding formulae for the matrix elements and
interatomic forces can be found in theAppendix. In a ®nal
section we present results of a series of test calculations
and discuss various aspects of the performance of the
method.

2 The hybrid Gaussian and PW density functional

In this section we want to recall the main features of
the hybrid Gaussian and PW algorithm (GPW) pro-
posed in Ref. [4]. which is the starting point for the
present method. In the following we will refer to this
method as the Gaussian and augmented-PW (GAPW)
method.

The expression for the total electronic energy of a
molecular or crystalline system in the KS formulation of
DFT [1, 7, 8] is

Eel�n� � ET�n� � EV�n� � EH�n� � EXC�n� ; �1�
where ET�n� is the kinetic energy, EV�n� the electronic

interaction with the ionic cores, and EH�n� and EXC�n�
are the electronic Hartree and XC energy, respectively.

Within the GPW approach the electronic density n is
de®ned by its expansion in the basis functions

n�r� �
X
lm

Plmul�r�um�r� ; �2�

with the density matrix Plm. The ul�r� are contracted
Gaussian basis functions

ul�r� �
X

m

Cmlgm�r� ; �3�

where gm�r� are the primitive Gaussians. In the numer-
ical examples presented in Sect. 7 we shall use a basis of
the response-function type [9].

The core electrons are eliminated from the calculation
by introducing atomic pseudopotentials. The pseudo-
potential form chosen is the one designed by Goedecker
and coworkers [10, 11] which is separable and norm-
conserving and is based on Gaussians. Therefore, the
contributions of the kinetic energy and the pseudopo-
tential can be evaluated analytically within the Gaussian
basis using recurrence relations [12].

To evaluate the density-dependent contributions
EH�n� and EXC�n� the density is expanded in an auxiliary
basis of PW

�n�r� � 1

X

X
jGj<GC

n�G�eiGr ; �4�

where X is the volume of the periodic cell and EC � 1
2 G2

C
is the PW cuto� energy determining the number of
wavevectors in the reciprocal grid. Starting from the
reciprocal-space representation of the density the
Hartree and the XC energies and potentials can be
calculated straightforwardly by switching between real-
space and reciprocal-space representations with the aid
of FFT. Finally, the KS energy functional in the GPW
approach has the form

Eel�n� �
X
lm

Plm ul�r� ÿ
D
2

���� ����um�r�
� �

�
X
lm

Plmhul�r�jV PP�r; r0�jum�r0�i

� 4pX
X
jGj<GC

�n��G��n�G�
G2

�
Z

dr �n�r� EXC�~n��r� : �5�
the G � 0 term in the Hartree energy will be treated with
the Ewald method [13, 14]. Note that the assumption of
periodicity that is implied here does not limit the
generality of this approach since isolated systems can
be handled either with the approach in Refs. [15, 16] or
in Refs. [17, 18], or by using an appropriate supercell.

Similar to the evaluation of the energy functional the
calculation of the KS matrix elements is divided into two
halves. The matrix elements of the kinetic energy and the
pseudopotential can be integrated analytically using re-
cursion relations, and the matrix elements of the Hartree
and the XC potentials are calculated on the FFT mesh.
The use of FFT enables us to combine the Hartree and
the XC potentials into the KS potential. As a conse-
quence these matrix elements need not be integrated
separately.

On the level of Gaussian primitives the matrix ele-
ments of the KS potential are de®ned as

hgmjVKSjgni � 1

X2

X
jGj<GC

gmn�ÿG�VKS�G� ; �6�

where X is the volume of the periodic cell and gmn�G�
is the Fourier transform of the product of the two
Gaussians gmn � gmgn.
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We showed in Ref. [4] that the construction of the
PW representation of the density and the integration of
the matrix elements of the KS potential can be carried
out on the real-space Fourier grid. Instead of calculating
the density directly in reciprocal space via the analytical
Fourier transforms of the product Gaussians gmn

n�G� �
X
mn

Pmngmn�G� ; �7�

where Pmn is the density matrix in terms of the Gaussian
primitives, we ®rst calculate the density on the real-space
FFT mesh points Ri

n�Ri� �
X
mn

Pmngmn�Ri� �8�

and then Fourier transform the total density:

n�G� � X
M

X
Ri2X

n�Ri�eÿiGRi ; �9�

where M is the number of gridpoints in the FFT mesh.
In the case of the matrix elements we proceed in the
reverse order. We ®rst Fourier transform the KS
potential

VKS�Ri� � 1

X

X
jGj<GC

VKS�G�eiGRi ; �10�

and then integrate the matrix elements on the real-space
FFT mesh:

hgmjVKSjgni �
X
Ri2X

gmn�Ri�VKS�Ri� : �11�

The main advantage of this real-space integration
technique is that the product Gaussians in Eqs. (8) and
(11) can be truncated outside their localisation region.
This leads to a system-size-independent e�ort for each
Gaussian product which cannot be achieved in recipro-
cal space. Therefore, by going from the reciprocal to the
real-space formulation, the scaling of the algorithm is
reduced from O�N2� to O�N�.

Equations (8) and (11) are both exact representations
of the electron density and the matrix elements for the
KS potential, respectively, if the discrete Fourier trans-
form of the gmn�G� is used. However, the whole method
is based on the assumption that the cuto� is chosen to be
high enough to ensure that the PW basis is su�ciently
large to describe the electron density properly. In this
case, the replacement of the discrete by the analytic
Fourier transform of gmn results only in a minor ap-
proximation.

Although the real-space formulation leads to a linear
scaling algorithm, it turned out in the actual calculations
that in spite of the use of pseudopotentials, the cuto�
needed for a converged calculation leads to an unfa-
vorably high number of FFT gridpoints. Therefore, the
real-space integration becomes the time-limiting step of
the whole algorithm.

The GAPW approach presented in the following
sections is designed to cure this de®ciency. By changing
the representation of the electronic density from a pure
PW to an APW representation the cuto� and, as a

consequence, the number of FFT gridpoints needed for
the PW part of the density is drastically reduced.

3 The GAPW representation of the electron density

The wavefunctions and, as a consequence, the electron
density of a molecular system exhibit di�erent properties
in di�erent regions of space. In the binding region the
density varies slowly while close to the nuclei it shows a
strong variation. This is valid for all-electron calcula-
tions but is also true, although to a much lesser extent,
for the pseudopotential approach.

This suggests that for an e�cient representation of
the density, di�erent regions need to be represented in
a di�erent manner, a concept which is widely used in
band-structure calculations. We thus assume for the time
being that we can write the density as the sum of three
contributions

n � ~nÿ ~n1 � n1 ; �12�
where ~n is smooth and distributed over all space, and

n1 �
X

A

n1A �13�

~n1 �
X

A

~n1A �14�

are sums of atom-centred contributions n1A and ~n1A, which
are hard and soft, respectively. We assume that in some
regions UA around the atoms, which do not overlap

UA \ UB � ; for A 6� B : �15�
the relation

~n�r� � ~n1A�r� for r 2 UA �16�
is true, and therefore ~n1A cancels the contributions of ~n
inside the atomic region UA, which is replaced by the
hard component n1A. Outside the atomic regions in the
interstitial region, I, we assume that

~n�r� � n�r� for r 2 I ; �17�
or, equivalently

n1
A�r� ÿ ~n1A�r� � 0 for r 2 I : �18�
Note that this is automatically satis®ed if n1

A and ~n1A are
entirely con®ned within the regions UA, but this does not
necessarily have to be true.

With this separation we can treat di�erent regions of
space in a di�erent manner: ~n is easily representable with
small numbers of PW, while we can use localised
Gaussians to represent n1 and ~n1.

We now collect the assumptions made to set up the
GAPW representation of the electron density:

n�r� ÿ ~n�r� � 0 for r 2 I

n1A�r� ÿ ~n1
A�r� � 0 for r 2 I

~n�r� ÿ ~n1A�r� � 0 for r 2 UA

n�r� ÿ n1A�r� � 0 for r 2 UA :

�19�

Making use of these relations BloÈ chl [6] has demon-
strated that the Hartree and XC functionals can be
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separated into independent global and local contribu-
tions. The semilocal XC functionals EXC�n� such as the
local density approximation (LDA) or the general
gradient approximation can be simply written as

EXC�n� � EXC�~n� ÿ
X

A

EXC�~n1A� �
X

A

EXC�n1A� : �20�

The ®rst term can be calculated on the real-space grid of
the FFT, while the other two are single-centre integrals
that can be very accurately evaluated using atomic
meshes.

More involved is the calculation of the Hartree term,
which requires the introduction of appropriate localised
screening densities expanded in a set of hard and soft
Gaussians, respectively:

n0A �
X
`m

Q`m
A g`mA n0 �

X
A

n0A

~n0A �
X
`m

Q`m
A ~g`mA ~n0 �

X
A

~n0A : �21�

The Q`m
A are de®ned as

Q`m
A � Nq`m n1A ÿ ~n1

A � nZ
A

� �
: �22�

where q`m�n� is the multipole moment operator as de®ned
in the Appendix, nZ

A is the charge density of the ionic
core at atom A, and N is a normalisation constant. These
densities exactly cancel the electrostatic multipole mo-
ments of the one-centre densities and thus allow a
separation of the contributions to the Hartree energy.
The ®nal result for the Hartree functional is

EH�n� nZ� � EH ~n� ~n0
� �

�
X

A

EH n1
A � nZA

� �ÿX
A

EH ~n1
A � n0A

� �
� EH�n0� ÿ EH�~n0� �

Z
dr VH n0 ÿ ~n0

� �
~n ;

�23�
where EH�n� and VH�n� denote the functionals

EH�n� � 1

2

ZZ
dr dr0

n�r�n�r0�
jrÿ r0j

VH�n��r� �
Z

dr0
n�r0�
jrÿ r0j : �24�

As in the case of the XC functional, the Hartree
functional in the GAPW formulation (Eq. 23) is
separated into a global term that involves only smooth
densities and local terms that involve short-ranged one-,
two-, and three-centre integrals. Therefore, the global
part can be calculated in the PW representation using a
PW basis of modest size, while the local parts can be
evaluated analytically in the Gaussian representation.

4 Construction of the GAPW density

The concepts that were introduced in the preceding
section do not depend on the explicit form of the one-
centre densities and it is not evident if or how the
densities ~n, n1, and ~n1 that obey the conditions in Eq. (19)

can be constructed. It is the aim of this section to show
how these densities can be obtained within the GAPW
approach.

4.1 The smooth density ~n

To construct the smooth density, ~n, the rapidly varying
parts have to be eliminated from the original density, n.
Since the density is de®ned by its expansion in basis
functions ul,

n �
X
lm

Plm ulum ; �25�

the rapid variations of ul close to the nuclei will be
re¯ected in n. When expanded in Gaussians, these
variations require the use of strongly localised primitive
Gaussians. As in Ref. [4] we will need a converged
expansion of the Gaussians in PW and therefore the
cuto� is forced up by the most localised primitives. It is
thus natural and highly e�ective to smooth the basis
functions by simply eliminating the most localised
primitives in the response function expansion. Accord-
ingly in the expression

ul �
X

m

Cmlgm �26�

we put to zero the coe�cients Cml which correspond to
the most localised Gaussians. This de®nes a smoothed
basis function

~ul �
X

m

~Cmlgm ; �27�

where

~Cml � 0 for m � 1; . . . ; k
~Cml � Cml for m � k � 1; . . . ;Nm :

Clearly this smoothing a�ects only a localised region
around the nuclei (Fig. 1). If we now de®ne a density
using the smooth functions ~ul instead of the hard
ones ul

Fig. 1. Comparison between original basis function u and
smoothed basis function ~u. The deviation is restricted to the
region around the nuclei
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~n �
X
lm

Plm ~ul ~um ; �28�

this density can be expanded in PW with a much smaller
cuto�, GC,

~n � 1

X

X
G<GC

~n�G�eiGr : �29�

Furthermore, it is evident that this smooth density ful®ls
the requirement

n�r� � ~n�r� for r 2 I ; �30�
if we de®ne the atomic regions UA as the regions around
an atom A where ~u and u are di�erent, and I as the
interstitial region outside the atomic regions. The
condition (Eq. 15) is then a criterion for the number of
primitives that can be eliminated. Starting from the most
localised primitives, i.e. the ones with the highest
exponents, we successively enlarge the atomic regions
by leaving out primitives with smaller exponents. We can
continue eliminating primitives as long as the overlap of
the atomic regions is negligible.

4.2 The one-centre densities n1 and ~n1

After having de®ned the smooth global density, ~n, the
procedure to construct the one-centre densities n1 and ~n1

is dictated by the conditions (Eq. 19) which require that
the one-centre densities have to be locally identical to the
global densities n and ~n. In order to achieve the goal of
an e�cient algorithm we need to impose the additional
requirement that a one-centre density at a given atom is
expanded only in basis functions centred at the same
atom. Here we will discuss ®rst the construction of the
hard one-centre density, n1, before applying the proce-
dure to the construction of the smooth one-centre
density, ~n1.

We want to construct a density n1A centred at atom A,
such that

n1A�r� � n�r� for r 2 UA ; �31�
and express such a density only in terms of a basis set
centred on atom A. The problem of constructing n1

A can
be transformed into the ®nding functions vl centred on
A such that

vl�rÿ RA� � ul�r� for r 2 UA ; �32�
whether ul centred on A or not. If ul is centred on A
then we have

vl � ul ; �33�
which in terms of the primitives reads

vl �
X

a

Calga : �34�

If ul is not centred on A, its contribution to the density
inside the region UA is much smaller because ul reaches
inside UA only with its tails. Since the tail is rather
smooth it does not require much ¯exibility of the basis in
which it is expanded. The orbital-like contracted basis

functions at atom A, however, are not very well adapted
to describe this smooth tail because of their oscillatory
behaviour inside UA. In contrast, the uncontracted
primitives contained in the basis functions do not exhibit
oscillations. Especially the more di�use primitives with
small exponents are able to reproduce the smooth tail
correctly.

Therefore, we choose the primitive Gaussians ga of
the basis functions at atom A for the representation of
the one-centre expansion of all the basis functions ul.
Consequently, the ansatz for the basis function ap-
proximation at atom A is

vl �
X

a

C0alga : �35�

Now the coe�cients C0al have to be determined so as to
satisfy Eq. (32). We have already stated that the
coe�cients for the one-centre approximation of the
basis functions located at the same atom are identical to
the contraction coe�cients of those basis functions

C0aa � Caa ; �36�
and therefore

va �
X

a

Caaga � ua : �37�

The expansion coe�cients C0al for basis functions
located at other atoms are determined in the spirit of
the PAW method of BloÈ chl. We present here our
realisation of the projection of the basis functions ul
onto the primitives ga at atom A.

The purpose of the projection is to ®lter out from ul
at atom M 6� A that part which is contained in UA. To
this e�ect we take a new set of Gaussians centred at A
which serves as a projector basis fpag. The number of
Gaussians in fpag is equal to the number of primitives
ga. We choose the same set of exponents for all angular
momenta. The smallest exponent is determined by the
requirement that the Gaussian is just contained in UA.
Higher exponents, as customary, form a geometric
progression.

Projecting the basis functions then yields

hpbjuli �
X

a

C0alhpbjgai ; �38�

where we have inserted the desired result

ul�r� �
X

a

C0alga�r� for r 2 UA : �39�

The coe�cients C0al can be obtained by inverting hpjgi:
C0al �

X
b

hpjgiÿ1ab hpbjuli : �40�

To simplify the notation we de®ne a new set of
projectors

hp0aj �
X

b

hpjgiÿ1ab hpbj ; �41�

in order to write the coe�cients as an overlap integral
between the new projectors and the basis functions

C0al � hp0ajuli : �42�
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In analogy to the total electron density

n �
X
lm

Plmulum

�
X
mn

X
lm

CmlPlmCnmgmgn : �43�

we can not write the one-centre density n1A as

n1A �
X
lm

Plmvlvm

�
X
ab2A

X
lm

C0alPlmC0bmgagb : �44�

The constructed one-centre densities n1
A satisfy the

condition

n1A�r� � n�r� for r 2 UA �45�
only approximately. The quality of the approximation
is, however, rather good due to the reason discussed
previously, and in Sect. 7 we show with numerical tests
that the error introduced is negligible.

In spite of the formal analogy of the total electron
density and the one-centre density, not all of the basis
functions and density matrix elements contribute to the
one-centre density and the sum (Eq. 14) extends only
formally over all pairs of indices, l; m. In fact, only those
basis functions appear in the sum which overlap with the
projectors at atom A, i.e. with the atomic region UA. This
ensures that the cost of calculating n1

A�r� is system-size
independent.

In the same way as the one-centre densities n1A are
constructed the smooth one-centre densities can also be
obtained:

~n1A �
X
lm

Plm~vl~vm ; �46�

where

~vl �
X

a

~C0alga : �47�

Also in this case the one-centre expansion vl of the basis
functions ul can be divided into two groups: the ones
located at the same atom, and the others. Again, the ®rst
group can be described exactly

~va � ~ua �a 2 A� ; �48�
and the coe�cients are identical to the contraction
coe�cients of the basis functions

~C0aa � ~Caa : �49�
For the second group the coe�cients could again be
determined by projection; however, there is no need for
that. Since the hard and smooth basis functions coincide
outside their atomic region UM

ul�r� � ~ul�r� for r 62 UM �50�
and the atomic regions do not overlap; they coincide in
particular inside the atomic regions of other atoms

ul�r� � ~ul�r� for r 2 UA; A 6� M : �51�

The respective hard and soft one-centre expansions also
coincide

~vl � vl

~C0al � C0al for A 6� M : �52�
Therefore, the coe�cients ~C0al do not need to be
determined by another projection, but can simply be
taken from the one-centre expansion of the hard basis
functions. In addition, it follows that the hard and the
smooth one-centre densities

n1
A �

X
ab2A

X
lm

C0alPlmC0bmgagb �53�

~n1A �
X
ab2A

X
lm

~C0alPlm
~C0bmgagb �54�

only di�er from each other inside their atomic region, as
was required by Eq. (19).

In this way we have succeeded in constructing the
GAPW representation of the density

n � ~nÿ ~n1 � n1 �55�
postulated in Eq. (12). We now have at our disposal two
equivalent representations of the electron density, the
linear combination of atomic orbitals representation

n �
X
lm

Plmulum �56�

and the GAPW representation

~nÿ ~n1 � n1 � 1

X

X
G<GC

~n�G�eiGr

ÿ
X

A

X
ab2A

X
lm

~C0alPlm
~C0bmgagb

�
X

A

X
ab2A

X
lm

C0alPlmC0bmgagb ; �57�

which allow us to evaluate in the most appropriate way
each of the various contributions to the KS functional
(Eq. 5) from Sect. 2 with the modi®cations of the
preceeding section.

Finally, we want to point out that, unlike in ordinary
APW schemes [19], the atomic regions were only intro-
duced as a concept to ensure that the subdivision of local
and global terms is done correctly. They do not, how-
ever, appear explicitly in the functional, and they in-
troduce no boundary conditions on basis functions,
wavefunctions, or densities.

5 The multiple-cuto� method for the Fourier real-space
integration and the PW expansion of the density

In G space the matrix elements of the KS potential are
(see Eq. 6)

hgmjVKSjgni � 1

X2

X
jGij<GC

gmn�ÿG�VKS�G� : �58�

While GC is determined by the gmn with the largest
exponents, the gmn with smaller exponents decay much
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faster in G space and act as a ®lter. We can take
advantage of this and in principle use for each gmn a
di�erent cuto� Emn

C determined by its exponent
amn � am � an. In real space this would lead to the use
of a di�erent mesh Xmn for di�erent gmn:

hgmjVKSjgni �
X

R2Xmn

gmn�R�VKS�R� : �59�

This leads to big computational savings since for each
matrix element we have to evaluate the same number of
terms rather than having to use for all gmn the very ®ne
mesh needed to evaluate the largest exponent. Note that
by varying EC one obtains meshes in real space which are
in general not simply related to one another (Fig. 2).
One could use some interpolation scheme to go from VKS

in the ®ner mesh to the coarser one. In the spirit of this
work we prefer to use the Fourier interpolation which
amounts to calculating V mn

KS as

V mn
KSR �

1

X

X
jGij<Gmn

C

VKSGeiGR : �60�

In fact, taking a di�erent cuto� for each product gmn is
impractical because it involves a very large number of
FFTs. For this reason we lump the gmn in groups (Fig. 3)
and within each group we use the same cuto�. In the test
calculations reported later we have used between ®ve
and eight di�erent meshes. The typical computational
gain by the use of this multiple-cuto� method is a factor
of 3±5.

Another part of the calculation that can pro®t from
this scheme is the collocation of the density in the real-
space grid, which is done to calculate n�G� (see Eq. 8).
To this e�ect we again lump the various contributions to
n�R� in groups according to the value of the exponent
amn. For each group we use a di�erent real-space mesh
and perform an FFT with di�erent cuto�s as was done
earlier. The contributions in G space from the di�erent
groups of exponents are then summed together to obtain
the total n�G�.

The cuto� values for the groups are determined by a
new parameter, which we call the ``relative cuto� '' Erel

C .
We have shown [20] that for a given accuracy the cuto�
energy for the expansion of a Gaussian with exponent amn
is proportional to amn. This proportionality factor is Erel

C :

Emn
C � Erel

C amn : �61�

The cuto� for each group of Gaussians is then given by
the product of the biggest exponent in the group and the
relative cuto�.

If the calculation of the Gaussian-pair functions in
the density and the potential calculations are done on
the same grids, the multiple-cuto� scheme can be re-
garded as a slight rede®nition of ~n�G�.

6 The energy functional in the GAPW form

In this section we collect the modi®cations of the energy
functional due to the GAPW representation of the
electron density. The new functional, which is the
de®ning expression of the GAPW method, has the form

Eel�fRAg; n� � ET�n� � EVPP
�n� � EH�~n� ~n0�

�
X

A

fEH�n1A � nZ
A � ÿ EH�~n1

A � n0A�g

Fig. 2. The fast Fourier trans-
form grids for the reciprocal-
space and real-space represen-
tations when three grid levels
are used. In reciprocal space
each grid is a subgrid of the
next highest level; therefore,
di�erent levels can be summed,
multiplied, etc. with each other.
In the real-space representation
the grids are in general incom-
mensurate

Fig. 3. Distribution of the number of Gaussians in the calculation
of the density and the matrix elements of the Kohn±Sham potential
depending on the exponents. The distribution was evaluated for a
system of eight water molecules. The features of the distribution are
nevertheless universal and depend only weakly on the system under
consideration. The broken lines mark possible limits for the
exponent intervals comprised in a cuto� level

130



ÿ EH�~n0� � EH�n0� �
Z

drVH�n0 ÿ ~n0�~n
� EXC�~n� �

X
A

fEXC�n1
A� ÿ EXC�~n1A�g ; �62�

where n0 and ~n0 are the screening charge densities de®ned
in Sect. 3 and nZA is the charge density of the ionic core of
atom A. It is easy to identify the contributions ET.
EVPP

;EH�~n� ~n0� and EXC�~n� in the GAPW functional as
the ones corresponding to the parts of the original
functional (Eq. 5). The kinetic and pseudopotential
energy contributions remain unchanged. As before, they
will be evaluated analytically in the Gaussian representa-
tion. The important modi®cation that has entered the
Hartree andXCpart is the substitution of the total density
with the smooth global APW density. While the func-
tional form and the procedure of the calculation remain
the same, the amount of work is now greatly reduced due
to the much smaller number of G vectors in the PW basis.

The additional parts of the GAPW functional that
were absent in the original functional are the APW terms
resulting from the one-centre contributions. These parts
involve either sums of one-centre terms (EH�n1A � nZ

A �;
EH�~n1

A � n0A�;EXC�n1A�;EXC�~n1A�) or two- and three-centre
terms that decay very rapidly and can be screened e�-
ciently (EH�~n0� ÿ EH�n0�;

R
VH�n0 ÿ ~n0�~n). All local con-

tributions are evaluated in the Gaussian representation.
While the contributions to the Hartree functional are
integrated analytically with the aid of recurrence rela-
tions, the contributions of the XC functional are inte-
grated numerically on Lebedev grids [21±23]. Due to
their locality all these terms can be calculated with a very
moderate computational e�ort. The gain in e�ciency
due to the reduction of the PW basis set size exeeds by
far the additional cost of the local terms.

To conclude the presentation of the GAPW func-
tional we recall the approximations inherent in the
GAPW approach. One approximation is the ®nite size of
the PW basis. As in pure PW schemes it is essential to
ensure a converged calculation with respect to the PW
cuto�. Since the quality of the PW basis depends only on
one single parameter, the PW cuto�, it is easy to check
the convergence in practical applications.

Another approximation is inherent in the one-centre
expansion of the electronic density. Here, the main
contributions arise from the on-centre terms, which are
described exactly, while the contributions from other
centres, which have to be approximated, are rather
marginal. The quality of the expansion is limited by the
variational freedom in the Gaussian basis of the re-
spective atom; however, since the contributions from
other centres consist only of the tails of the basisfunc-
tions, a moderately sized basis set is enough to ensure an
accurate description of the one-centre density.

As for all Gaussian-based methods, the in¯uence of
the basis on the result is by far the most severe. Com-
pared to the incompleteness of the Gaussian basis set
underlying the calculation, the errors introduced by the
GAPW approach are negligible; however, by subse-
quently increasing the size of the Gaussian and the PW
basis the GAPW method will, in the limit, give the exact
result within the density functional framework.

Finally, we want to emphasize that all approxima-
tions in the GAPW approach can be thought of as slight
rede®nitions of the exact KS functional. Given the
GAPW energy functional with its conceptual approxi-
mations, the matrix elements, the interatomic forces and
all properties of the electronic structure are obtained as
analytic derivatives of the energy functional. This im-
plies in particular that the derived forces are consistent
with the total energy, which is essential for the purpose
of geometry optimisations and molecular dynamics
simulations.

7 Test calculations

In the following subsections we report the results of a
series of calculations, which were carried out to demon-
strate the performance and reliability of the GAPW
method. We start out with a study of the convergence
behaviour of the method with respect to the PW cuto�.
Then we report test calculations for several small
molecules in comparison to other methods. We present
a study of the scaling behaviour of the method for big
systems, and ®nally we discuss a molecular dynamics
simulation of an iron porphyrin system which serves as
an example for a potential application of the method.

7.1 Convergence of the PW auxiliary basis

The main goal in the development of the GAPWmethod
was to enhance the performance of the GPW method by
reducing the number of PW needed for the expansion of
the density and the KS potential; therefore, the ®rst test
calculations were carried out to clarify whether this goal
had been achieved or not. We compared the convergence
behaviour of the LDA total energy and the bond length
of a water molecule with respect to the total PW cuto�
for the GPW and the GAPW method (Fig. 4). The basis
set we used had three functions per valence shell and two
polarisation functions (TZV2P). One can see that both
methods exhibit the same qualitative convergence be-
haviour, but for the GAPW method the curves are
shifted towards lower cuto� energies. In the cuto�
regions that correspond to reasonably well converged
calculations one gains almost a factor of 3 by going from
GPW to GAPW. Regarding the fact that the number of
PW is proportional to E3=2

C this amounts to a factor of 8
in the number of wave vectors, i.e. in the number of
operations. Thus, it can be expected that the combined
e�ect of the GAPW representation of the density and the
multiple-cuto� method will remove the bottleneck of the
FFT real-space integration from the method.

With the implementation of the multiple-cuto�
method another parameter has been introduced: the
relative cuto� Erel

C . According to the discussion in Sect. 5
Erel
C is a universal quantity which is independent of the

type of Gaussian basis set and the system under con-
sideration. Once determined, it can be used in all cal-
culations; therefore, the second test in this section is a
study of the convergence of a calculation with respect to
Erel
C . As a test case we again took a water molecule with a
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basis set of TZV2P type (Table 1). Starting from a value
of 50 rydberg Erel

C was reduced stepwise to a value of 15
rydberg. The LDA total energy, bond length, and bond
angle are hardly a�ected until Erel

C drops bellow 30
rydberg; however, one then sees a drastic e�ect between
20 and 15 rydberg, and below 15 rydberg the geometry
optimisation failed to converge. This suggests a standard
value for Erel

C around 30 rydberg, which may be varied to

higher or lower values in cases when high accuracy or
high performance is demanded, respectively.

7.2 Small molecules

The calculations presented in this section serve as a
comparison between the GAPW method and several
other methods with respect to the accuracy of the results.
A series of calculations of structural properties of small
molecules in the LDA was carried out. The di�erences in
the methods under investigation consist mainly of the
di�erent types of basis functions which represent the
density. The calculations with Gaussian94 [24] use only
Gaussian-type functions while CPMD [25] is a pure PW
scheme. NUMOL [26] on the other hand uses numerical
grids and is therefore free from basis-sets. The Gauss-
ian94 calculations are all-electron calculations, NUMOL
uses a frozen-core approximation, while the GPW,
GAPW, and CPMD calculations use the pseudopoten-
tials of Goedecker and coworkers [10, 11]. The basis sets
used in the GPW and GAPW calculations are atomic
response function basis sets [9] with ®ve exponents
contracted to three s and three p functions (three s
functions for H) and two polarisation functions with
single exponents of d symmetry (p symmetry for H),
corresponding to a triple zeta double polarisation
(TZ2P) basis set in the quantum chemical jargon.

The most important result of the structure optimi-
sations reported in Table 2 is the excellent agreement of
the GPW and GAPW results. This con®rms the argu-
ments in Sect. 6 stating that the additional approxima-
tions inherent in the GAPW approach do not a�ect the
accuracy of the method. Comparing the GAPW results
with the results of the other methods gives satisfactory
agreement, regarding the fact that the basis sets used

Fig. 4. Comparison of the convergence behaviour with respect to
the cuto� energy ECutoff of the Gaussian and plane-wave (GPW ) and
Gaussian and augmented- PW (GAPW ) methods. The di�erences in
the total energy E [mhartree] and the bond length r �10ÿ4 AÊ ] relative
to the equilibrium values of a water molecule are shown. The full
lines correspond to the GAPW calculation and the dashed lines to
the GPW calculation

Table 1. Total energy (hartree), bond length (AÊ ) and bond angle
(°) of H2O for di�erent values of the relative cuto� energy Erel

C
(rydberg) for the multiple-cuto� method. The total cuto� for all
calculations was 336 rydberg

Erel
C Total energy ROAH �HOH

50 )17.170071 0.9716 105.55
40 )17.170071 0.9716 105.55
30 )17.170082 0.9716 105.55
20 )17.170608 0.9714 105.62
15 )17.173410 0.9719 105.44

Table 2. Bond lengths (AÊ ) [and
angles (°)] of several small mo-
lecules obtained with di�erent
methods: plane wave (PW),
Gaussian and PW (GPW),
Gaussian and augmental PW
(GAPW), Gaussian 94 (G94) [24]
and NUMOL [26]

Molecule GPW GAPW PW G94
(6-311++G(3df,2p))

NUMOL

H2 0.766 0.766 0.766 0.764 0.765
HF 0.935 0.936 0.933 0.930 0.932
H2O 0.971 (105.6) 0.971 (105.6) 0.971 (104.9) 0.969 (105.1) 0.970 (105.0)
NH3 1.022 (107.5) 1.022 (107.5) 1.022 (107.3) 1.021 (107.4) 1.021 (107.3)
CH4 1.097 1.097 1.097 1.095 1.096
N2 1.105 1.105 1.094 1.094 1.094
F2 1.403 1.405 1.387 1.381 1.384
CO 1.132 1.133 1.126 1.126 1.127
CO2 1.169 1.169 1.162 1.160 1.162
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in the GAPW calculations are standard basis sets of
moderate size that can also be employed in larger ap-
plications, whereas the basis sets used in the other cal-
culations are at the upper limit of practicability. Further
enlargement of the basis in the GAPW calculation would
yield even better agreement of the results.

Besides the molecular geometries, vibrational fre-
quencies and atomisation energies are most widely used
for the comparison of di�erent methods. Here, we report
results for a selection of diatomic molecules (Tables 3,
4). For the comparison of the results for the harmonic
frequencies we carried out calculations with Gaussian94
where we used two di�erent basis sets to give an estimate
of the in¯uence of the basis on the results. The di�er-
ences between the GPW and GAPW results indicate that
the GPW calculations might not be fully converged.
Especially the molecules containing O and F, which both
need a relatively high cuto� in the GPW approach,
exhibit strong deviations.

In contrast to the harmonic frequencies the atomi-
sation energies of the GPW and the GAPW methods are
in excellent agreement. This is due to the fact that the
atomisation energies are energy di�erences, which con-
verge much faster than absolute quantities. The results
are also in good agreement with the PW calculations
where the average deviation is 6 kcal/mol.

7.3 Big Systems

In the previous section the reliability of the GAPW
method was studied. The tests reported there were
essential to ensure that the application of the method
leads to accurate results within the density functional
framework. The method, however, was not designed for
calculations of those small molecules, but for the
e�cient simulation of big systems. Since most of the
relevant features of our approach only become signi®-

cant for systems of intermediate and larger size we
present here several studies with zeolite systems, where
the system size ranges from 72 to 360 atoms, or from 936
to 6336 basis functions.

In the ®rst study we examined the scaling behaviour
of the computational cost of the GAPW method with
zeolite systems that were composed of multiple copies
of a unit cell of Si24O48 (Z1) with two di�erent basis
set types, namely a DZVP (13 functions/atom) and a
TZV2P (22 functions/atom). In all calculations the LDA
was used. The timings of the construction of the KS
matrix are shown in Table 5. The DZVP calculation for
the largest system, which is 5 times as big as the smallest
one, takes about 5.5 times longer. For the TZV2P cal-
culations the ratio of the system sizes of the biggest and
the smallest system is 4 and the time ratio is 4.3. The
numbers clearly prove that the scaling with system size
of the computation time for the construction of the KS
matrix is nearly linear.

Another aspect is the in¯uence of the basis set type on
the computational cost of a calculation. We carried out
calculations of the zeolite system Si24O48 with four dif-
ferent basis sets of SZV, DZV, DZVP, and TZV2P
quality, with a cuto� of 60 rydberg and the LDA func-
tional (Table 6). The observation that can be made is
that the computation time increases sublinearly with the
number of basis functions. Doubling the size of the basis
from SZV to DZV only requires 40% more computation
time. This behaviour is due to the use of basis sets with
shared exponents, which have the same number of
primitives for the SZV, DZV, and TZV shells. This
property can be optimally exploited in our analytical
recursion scheme and our FFT real-space integrations.
For the GAPW method this behaviour is essential since

Table 3. Harmonic frequencies (cm)1) of several diatomic mole-
cules obtained with di�erent methods

Molecule GPW GAPW G94
6-311G (2d,2p)

G94
6-311��G)3df,2p)

H2 4204 4200 4207 4206
HF 3870 3939 4029 4008
N2 2374 2375 2396 2407
F2 1084 1045 1059 1062
CO 2194 2178 2186 2193

Table 4. Atomisation energies (kcal mol)1) of several diatomic
molecules obtained with di�erent methods. The basis set super-
position error (BSSE) in the GPW and GAPW calculations
(<1 kcal mol)1) was checked and corrected with the ``counter-
poise'' method [38]. The PW calculations are BSSE free

Molecule GPW GAPW PW

H2 157.1 157.1 154.3
HF 191.5 191.3 198.9
N2 395.6 395.9 406.9
F2 94.2 94.4 97.9
CO 357.9 357.9 362.9

Table 5. Computation time in seconds on an IBM 397 workstation
for the construction and the diagonalisation (for the smaller
systems) of the Kohn±Sham matrix of zeolite systems. NBF denotes
the number of basis functions and Nel the number of electrons in
the system

Basis System Nel NBF Construction Diagonalisation

DZVP Si24O48 384 936 110 84 (40%)
DZVP Si48O96 768 1872 226 745 (77%)
DZVP Si72O144 1152 2808 346 2635 (88%)
DZVP Si96O192 1536 3744 466
DZVP Si120O240 1920 4680 611
TZV2P Si24O48 384 1584 187 309 (62%)
TZV2P Si48O96 768 3168 383
TZV2P Si72O144 1152 4752 586
TZV2P Si96O192 1536 6336 802

Table 6. Computation time in seconds on an IBM 395 workstation
for the construction of the Kohn±Sham matrix of zeolite systems.
NBF denotes the number of basis functions in the system. Relative
numbers are given in parentheses

Basis NBF Construction

SZV 288 (1.0) 100 (1.0)
DZV 576 (2.0) 141 (1.4)
DZVP 936 (3.3) 210 (2.1)
TZ2VP 1584 (5.5) 353 (3.5)
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we are able to use high-quality basis sets without spoil-
ing the overall performance of the method.

As already stressed, the reason for the linear scaling
of the KS matrix setup is the locality of the KS±Ham-
ilton operator, which couples only basis functions that
are located su�ciently close to each other in real space.
With increasing system size the fraction of interacting
basis-function pairs decreases. On the level of the ma-
trix elements this leads to a sparse population of the
overlap matrix, the KS matrix, and in principle, the
density matrix. To obtain a quantitative description of
the locality of the interactions we monitored the frac-
tion of nonvanishing matrix elements for the case of a
zeolite system with di�erent basis sets (Table 7). The
result is that for the system we studied, the overlap and
the KS matrixes are indeed only sparsely occupied,
while the density matrix has no vanishing elements. This
seems to contradict the assumption of locality of the
interactions, but it can be explained. The orthogonality
constraint for the KS orbitals prevents a good locali-
sation of the orbitals, thus leading to a long-range
coupling of the basis functions in the density matrix.
We expect the e�ect of the locality of the interactions on
the occupation of the density matrix to be sensible only
for systems that are much larger than the systems
considered here.

7.4 The iron porphyrin±imidazole±carbon monoxide
complex

To give an impression of the possibilities that the
QUICKSTEP implementation of the GAPW method
o�ers, we present an example for a potential application:
a molecular dynamics simulation of the iron porphyrin±
imidazole±carbon monoxide complex. This complex
belongs to the class of metal-substituted tetrapyrrole
ring complexes which constitute the active centres of
a variety of biological enzymes. As a result of their

importance in biochemistry these complexes have been
very intensively studied in the past [27±29]. We have
chosen the iron porphyrin system because of the very
recent ab initio investigation of Rovira et al. [30] on the
same system which was carried out with the PW code
CPMD [25] and which can serve as a benchmark for the
GAPW method. It has to be emphasized that we do not
intend to gain any new insight into the system under
investigation but to demonstrate the applicability of the
GAPW method to this type of problem.

The iron porphyrin system is depicted in Fig. 5. Our
heme model contains the porphyrin ring with the central
iron atom to which the imidazole ligand and the CO
molecule are attached from opposite sides. The imidaz-
ole plays the role of the histidine which normally con-
nects the active centre to the rest of the protein. The
simulation cell measures 15� 15� 12 AÊ in agreement
with Ref. [30]. We used the gradient-corrected functional
of Becke [31] and Perdew [32]. In the work of Rovira
et al. [30] an eight-electron pseudopotential with non-
linear core corrections was employed for iron. This cir-
cumvents the inclusion of the semicore electrons of the
2s and 2p shell that would force up the cuto� and the
computational cost considerably. This problem with
the semicore states does not appear with the GAPW
method, since the inclusion of inner electron shells does
not a�ect the cuto� and has only a minor in¯uence on
the computational cost. Therefore, we used a 16-electron
pseudopotential for iron avoiding the complications of
the nonlinear core corrections. The cuto� for the CPMD
calculation was 70 rydberg for the wavefunction or 280
rydberg for the density while we used a density cuto� of
107 rydberg and 5 cuto� levels with a relative cuto� of
20 rydberg in the QUICKSTEP calculation. The quality
of the atomic basis sets was chosen in accordance with
the importance of the atom for the FeACO bond:
3s3p3d functions for Fe, 3s; 3p; 2d functions for the
neighbours of Fe and for O, 2s2p1d for all other C and
N, and 2s for H. The choices for the cuto� and the basis
sets are the result of a series of test calculations and
represent a comprimise between accuracy and e�ciency.
The results of a geometry optimisation given in Table 8
prove that the chosen parameters are able to reproduce
the essential features of the system.

The molecular dynamics simulation was carried out
with a parallel computer implementation of QUICK-
STEP on eight nodes of a CRAY T3E. With this con-
®guration one self-consistent-®eld (SCF) step takes 57 s
on average; one molecular dynamics step 17 min. Dur-
ing each molecular dynamics step the electronic struc-

Table 7. Fraction of nonvanishing elements (>10)10) (in percent)
of the overlap, the Kohn±Sham and the density matrix for a Si36O64

zeolite system. NBF denotes the number of basis functions in the
system

Basis NBF Overlap Kohn±Sham Density

DZV 768 34 81 100
DZVP 1248 22 53 100
TZVP 1632 25 60 100

Fig. 5. The equilibrium struc-
ture of the iron porphyrin ±
imidazole ± carbon monoxide
[FeP(Im)(CO)] complex as
obtained with the GAPW
calculation
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ture is optimised, the interatomic forces are calculated,
and the atomic coordinates and velocities are updated
according to a standard velocity Verlet algorithm. A
timestep corresponds to 0.97 fs. The system was propa-
gated over a period of 2.2 ps at an average temperature
of 291.1 K. Figure 6 shows the time evolution of the
total energy, the total potential energy, which is com-
posed of the total electronic energy and the interaction
of the ionic cores, and of the temperature. The total
energy is the sum of the kinetic energy of the nuclei and
the total potential energy. This quantity should be con-
served during the simulation. Its variations are a mea-
sure for the quality of the simulation. The reference
quantity for the variations are the variations in the total
potential energy. From the middle graph in Fig. 6 one
can conclude that the total energy can be regarded as
constant since the variations are 2 orders of magnitude
less that those of the total potential energy.

Furthermore, it is obvious from Fig. 6 that the total
energy has no drift. This implies that no energy is taken
into or out of the system due to numerical inaccuracy,
which would lead to artefacts in the dynamics. Another
indicator for the same fact is the good conservation of
the temperature.

After having veri®ed that the molecular dynamics run
satis®ed the usual criteria we brie¯y summarise the re-
sults. As in Ref. [30] we concentrate on the dynamic
behaviour of the FeACO unit; therefore, we de®ne the
angles which describe the orientation of the FeACO unit
as in Fig. 7. The dynamics of these angles and the cor-
responding bond lengths are depicted in Fig. 8 and are
compared to the results of the CPMD calculation. The
distribution of the angles during the molecular dynamics
run is shown in Fig. 9.

Given the di�erences of the pure PW approach and
the GAPW method concerning the energy functional,
the basis functions, the pseudopotentials, the timestep in
the molecular dynamics, etc., the results agree remark-
ably well. The characteristics of the dynamic evolution
of the quantities that were monitored are the same in
both calculations. According to the small di�erences in
the equilibrium structures the average values of the bond
length are slightly shifted. A frequency analysis of the
bond stretching resulted in satisfactory agreement within
some ten wavenumbers. The dynamics of the angles
deviates somewhat. The QUICKSTEP calculation con-
tains more oscillations with larger amplitude, that lead
to broader tails in the distributions; however; the coarse
structure of the angular distributions in Fig. 9 gives a

Table 8. The most important bond lengths (AÊ ) and angles (°) of
the iron porphyrin±imidazole±carbon monoxide complex obtained
with di�erent methods. NIm denotes the N of the imidazole ring
which is attached to Fe

GAPW PW [30] Experiment [59]

RFeAC 1.74 1.72 1.77
RCAO 1.17 1.17 1.12
�FeCO 179 180 179
RFeAN 2.02 2.02 2.02
RFeANIm

2.05 2.07 2.10

Fig. 6. The upper graph shows the time evolution of the total
energy (EH) of the FeP(Im)(CO) complex during the molecular
dynamics simulation. In the middle graph the total energy (EH,
upper curve) is shown in relation to the total potential energy (Etotal,
lower curve). The lower graph shows the time evolution of the
temperature. The mean value of the temperature (291.1 K) is
marked

Fig. 7. De®nition of the angles describing the FeACO unit: tilt is
the angle of the FeAC bond with the normal vector of the plane
de®ned by the four nitrogens; bend is the angle of the FeAC bond
with the CAO bond; t&b is the angle of the di�erence vector of the
Fe and O position with the normal vector of the nitrogen plane
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hint that the length of the simulation does not allow
su�ciently good statistics in order to make a quantita-
tive comparison.

Summarising the discussion we can say that both
methods lead to qualitatively equivalent results. In
contrast to Ref. [30] we did not perform an analysis of
the electronic structure of the complex. Nevertheless,
such an analysis can be carried out using the GAPW
method and, due to the use of localised basis functions,
is even more straightforward than in the case of a pure
PW scheme.

Finally we compare the computational resources
needed for both methods. The computation time per

femtosecond simulation time was 6700 s in the case of
the CPMD run and 8400 s in the case of the
QUICKSTEP run. This is an encouraging result for
the GAPW method considering the fact that CPMD
was optimised over a period of 10 years and scales
almost perfectly on parallel computers while the
QUICKSTEP implementation is hardly optimised for
parallel computing and scales rather badly. Concern-
ing the memory requirements QUICKSTEP is superior
to CPMD. While the CPMD run had to be performed
on 32 nodes of a CRAY T3E with 128 Mbyte each,
the QUICKSTEP run could ®t on only four nodes of
the same type.

Fig. 8. Comparison of the dy-

namics of the bond lengths (AÊ )
and angles (�) of the FeACO
unit. On the left side are the
results of the QUICKSTEP
calculation, on the right side
those of the CPMD calculation.
The average values of the bond
lengths are marked. The angles
are de®ned in Fig. 7
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8 Conclusions

We have presented the GAPW method and discussed in
detail the theoretical and algorithmic principles of the
method. Starting from the GPW approach we substitut-
ed the PW auxiliary basis for the electron density by an
APW auxiliary basis which besides plane waves relies on
Gaussians. Therefore, the electron density, the XC
potential, and the Coulomb potential can be separated
into a smooth nonlocal contribution expanded in PW
and local contributions that can be described in
Gaussians and which can thus be treated analytically.
The gain in e�ciency due to the elimination of the hard
contributions in the PW expansion of the density,
resulting in a reduction of the number of wavevectors
by a factor of about 5, is much greater than the
additional e�ort for the Gaussian contributions. The
O�N logN� scaling behaviour, which was the essential
feature of the GPW method, is not a�ected by the
transition to the GAPW approach.

The tests we performed demonstrate that the GAPW
method is on the same level of accuracy and reliability as
established DFT methods. In addition, the GAPW ap-
proach contains several desirable features which make it
superior to pure PWmethods and methods based only on
localised basis functions. Like pure PW methods the
GAPW method incorporates periodic boundary condi-
tions in a natural way, making it especially suited for the
simulation of condensed phases. However, since all
important quantities are described in Gaussian-type
orbitals the memory requirements of the algorithm are
considerably lower than in pure PW schemes. Further-
more, in contrast to PW methods, the GAPW method is
not sensitive to empty regions of space. Therefore, iso-
lated systems can be simulated straightforwardly without
having to worry about the vacuum separating the peri-
odic replica of the system. The softness of pseudopoten-
tials, being essential for the cuto� in pure PW schemes, is
not crucial within the GAPW method, since the pseu-
dopotential in¯uences the hardness of the density only in

Fig. 9. Distribution of the tilt
(top), bend (centre), and t&b
(bottom) angles (�) during the
molecular dynamics run with
QUICKSTEP and CPMD. The
angles are de®ned in Fig. 7
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the core regions that are not included in the PW expan-
sion, and the pseudopotential itself is treated analytically.
Furthermore, it is possible to include the semicore states,
which enables us to deal with transition metals, and even
all-electron calculations can be performed.

The big advantage of the GAPW approach in com-
parison with methods based only on localised functions
is the e�cient calculation of the nonlocal part of the
Hartree functional in the PW representation in recipro-
cal space. Using the APW ansatz for the electron density
and the multiple-cuto� method we could speed up con-
siderably the calculation of the PW representation of the
density and the matrix elements of the KS potential. In
contrast to methods based on localised functions, there
is no ®tting procedure involved in the representation of
the density in the auxiliary basis. Another advantage of
the GAPW approach is the combination of the Coulomb
and the XC potential into the KS potential, that allows a
combined integration of the matrix elements. In tradi-
tional methods the integration of the XC part has to be
done numerically while the Coulomb part is done
analytically.

The GAPW method was developed to make the ab
initio simulation of very large systems of several hun-
dreds of atoms feasible; therefore, the focus was set on
the scaling behaviour of the method. The GAPW
method is a major step in the direction of methods that
scale linearly with the size of the system. The essential
parts of the algorithm for the calculation of the KS
matrix scale linearly or as O�N logN�. A problem that
needs to be addressed in the future is the update of the
density matrix in the SCF procedure. The diagonalising
of the KS matrix scales as N 3 and becomes the time-
limiting step for larger systems. To achieve a more fa-
vourable scaling, methods along the direction of those
proposed in the literature [33±37] have to be evaluated.

To further increase the scope of accessible system
sizes we plan to use the GAPW method as part of a so-
called ``embedding'' method. In this method only the
central part which is chemically active is described
quantum mechanically while the surroundings of the
active centre are described classically. In this way sterical
and electrostatic e�ects of the environment can be in-
cluded in the simulation. The use of such methods will
allow us to treat system sizes of several thousands of
atoms in the near future.

Appendix: Matrix elements and interatomic forces
in the GAPW formulation

In this Appendix we give the expressions for the matrix
elements of the KS matrix and the gradients of the total
energy with respect to the atomic positions. Since these
formulae result from straightforward functional deriva-
tives of the energy functional they are given without
proof.

We start with the expression for the KS matrix ele-
ments. These are de®ned by

�HKS�lm �
d

dPlm
Eel ; �A1�

where

d

dPlm
E�n;rin; . . .� �

Z
dr

dE�n;rin; . . .�
dn�r�

@n�r�
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�
Z

dr
@E�n;rin; . . .�

@n�r�
�

�
X

i

ri
@E�n;rin; . . .�
@rin�r� � � � �

)
@n�r�
@Plm

; �A2�

and n is one of the densities n; ~n; n1; ~n1; n0; ~n0. The
resulting matrix elements are

�HKS�lm � ul ÿ
D
2

���� ����um

� �
� ul�r� V PP

loc �r�d�rÿ r0� � V PP
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The indices XFFT and XA denote integration on the
FFT grid or on atomic Lebedev grids, respectively. All
other integrals are evaluated analytically. The term
q`m�n� denotes the multipole moments of a charge
distribution n

q`m�n� � 4p
2`� 1

Z
dr0n�r0�r0`S`m�r0� ; �A4�

where S`m are the real linear combinations of the
spherical harmonics

S`0 � Y `0

S`m � 1���
2
p Y `m � Y `ÿmÿ �

S`ÿm � 1

i
���
2
p Y `m ÿ Y `ÿm
ÿ �

: �A5�

The interatomic forces are de®ned by the gradient of the
total energy with respect to the atomic positions:
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In the case of the kinetic energy and the pseudopotential
energy this de®nition leads to the expression
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In this case of the Hartree energy and the XC energy the
expression is a bit lengthy due to the implicit position
dependence in the one-centre charge densities:

d

dRA
EH fRBg; n� � � EXC fRBg; n� �� �

� 2
X
lm

Plm ~ul VH ~n� ~n0
� �� VXC ~n� ��� ��rRA ~um


 �
XFFT

� 2
X
lm

Plm ~ul VH n0 ÿ ~n0
� ��� ��rRA ~um


 �
� 2

X
B

X
lm bc

C0blPlm rRA C0cm
ÿ �

� gb VH n1A � nZ
A

� ��� ��gc

 �� gb VXC n1

A

� ��� ��gc

 �

XA

n o
ÿ 2

X
B

X
lm bc

~C
0
blPlm rRA

~C
0
cm

� �
� gb VH ~n1A � n0

A

� ��� ��gc

 �� gb VXC ~n1A

� ��� ��gc

 	iXA

n o
�
X
A`m

X
lm

Plmq`m vlvm ÿ ~vl~vm

� �
�
( Z

XFFT

VH ~n� ~n0
� �rRA ~g`mA

�
Z

VH ~n� � rRA g`mA ÿrRA ~g`mA

ÿ �
�
X

A0

Z
VH n0A0
� �rRA g`mA ÿ

X
A0

Z
VH ~n0A0
� �rRA ~g`mA

)
� 2

X
A`m

X
lm

Plmq`m vlrRAvm ÿ ~vlrRA ~vm

� �

�
( Z

XFFT

VH ~n� ~n0
� �

~g`mA �
Z

VH ~n� � g`mA ÿ ~g`mA

ÿ �

�
X

A0

Z
VH n0

A0
� �

g`mA ÿ
X

A0

Z
VH ~n0

A0
� �

~g`mA

�
Z

VH ~n1A � n0
A

� �
g`mA

)
: �A8�

Again, the indices XFFT and XA denote integration on
the FFT grid or on atomic Lebedev grids, respectively.
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